Aging Characterization of Foamed Warm Mix Asphalt

preview-18
  • Aging Characterization of Foamed Warm Mix Asphalt Book Detail

  • Author : Mir Shahnewaz Arefin
  • Release Date : 2015
  • Publisher :
  • Genre : Asphalt
  • Pages : 129
  • ISBN 13 :
  • File Size : 60,60 MB

Aging Characterization of Foamed Warm Mix Asphalt by Mir Shahnewaz Arefin PDF Summary

Book Description: This study evaluated the aging characteristic of foamed warm mix asphalt (WMA) produced by water injection in comparison to traditional hot mix asphalt (HMA). Four types of asphalt binders (PG 64-22, PG 64-28, PG 70-22, PG 76-22) were used in the preparation of the foamed WMA and HMA mixtures. All mixtures were prepared using limestone aggregates with a nominal maximum aggregate size (NMAS) of 12.5 mm that met the Ohio Department of Transportation (ODOT) Construction and Material Specifications (C&MS) for Item 442 (Superpave Asphalt Concrete).The short-term and long-term aging of the asphalt binders were simulated using the rolling thin film oven (RTFO) and the pressure aging vessel (PAV), respectively, while the short-term and long-term aging of the laboratory-prepared asphalt mixtures were simulated according to AASHTO R 30 (Mixture Conditioning of Hot Mix Asphalt).The dynamic shear rheometer (DSR) was used to characterize the viscoelastic behavior of the unaged, RTFO-aged, and PAV-aged asphalt binders, while the dynamic modulus (lE*l) test was used to characterize the viscoelastic behavior of the short-term and long-term aged foamed WMA and HMA mixtures.In addition, the mechanistic-empirical pavement design guide (MEPDG) global aging model was used to predict the effect of aging on the dynamic modulus (lE*l) of foamed WMA and HMA mixtures, and the MEPDG global aging model predictions were compared to dynamic modulus (lE*l) test results obtained in the laboratory for both asphalt mixtures. By comparing the DSR test results following RTFO and PAV to those obtained for the unaged asphalt binders, it was observed that PG 64-22 was the least susceptible to aging followed by PG 70-22, PG 76-22, and PG 64-28. Similar trends were also observed from the dynamic modulus test, where little difference was noticed between the short-term and long-term aged specimens prepared using PG 64-22 for both foamed WMA and HMA mixtures.The dynamic modulus test results also revealed slightly lower lE*l values for foamed WMA mixtures in comparison to traditional HMA mixtures. This indicates that foamed WMA mixtures are slightly more susceptible to rutting than HMA mixtures. However, by comparing the dynamic modulus of the long-term aged specimens to the short-term aged specimens, it was observed that the increase in stiffness for the foamed WMA mixtures was less than that for the traditional HMA mixtures. This indicates that foamed WMA mixtures are less susceptible to aging and subsequently fatigue cracking than HMA mixtures.Finally, by the comparing the MEPDG global aging model predictions to the dynamic modulus test results for both foamed WMA and HMA mixtures, it was observed that the MEPDG global aging model provided more reasonable predictions, especially at higher frequencies, but overestimated or underestimated the dynamic modulus at lower frequencies. This was observed for both foamed WMA and HMA mixtures, which suggests that this model can be used for both types of mixtures.

Disclaimer: www.yourbookbest.com does not own Aging Characterization of Foamed Warm Mix Asphalt books pdf, neither created or scanned. We just provide the link that is already available on the internet, public domain and in Google Drive. If any way it violates the law or has any issues, then kindly mail us via contact us page to request the removal of the link.