Generative Models of Brain Connectivity for Population Studies

preview-18
  • Generative Models of Brain Connectivity for Population Studies Book Detail

  • Author : Archana Venkataraman (Ph. D.)
  • Release Date : 2012
  • Publisher :
  • Genre :
  • Pages : 139
  • ISBN 13 :
  • File Size : 58,58 MB

Generative Models of Brain Connectivity for Population Studies by Archana Venkataraman (Ph. D.) PDF Summary

Book Description: Connectivity analysis focuses on the interaction between brain regions. Such relationships inform us about patterns of neural communication and may enhance our understanding of neurological disorders. This thesis proposes a generative framework that uses anatomical and functional connectivity information to find impairments within a clinical population. Anatomical connectivity is measured via Diffusion Weighted Imaging (DWI), and functional connectivity is assessed using resting-state functional Magnetic Resonance Imaging (fMRI). We first develop a probabilistic model to merge information from DWI tractography and resting-state fMRI correlations. Our formulation captures the interaction between hidden templates of anatomical and functional connectivity within the brain. We also present an intuitive extension to population studies and demonstrate that our model learns predictive differences between a control and a schizophrenia population. Furthermore, combining the two modalities yields better results than considering each one in isolation. Although our joint model identifies widespread connectivity patterns influenced by a neurological disorder, the results are difficult to interpret and integrate with our regioncentric knowledge of the brain. To alleviate this problem, we present a novel approach to identify regions associated with the disorder based on connectivity information. Specifically, we assume that impairments of the disorder localize to a small subset of brain regions, which we call disease foci, and affect neural communication to/from these regions. This allows us to aggregate pairwise connectivity changes into a region-based representation of the disease. Once again, we use a probabilistic formulation: latent variables specify a template organization of the brain, which we indirectly observe through resting-state fMRI correlations and DWI tractography. Our inference algorithm simultaneously identifies both the afflicted regions and the network of aberrant functional connectivity. Finally, we extend the region-based model to include multiple collections of foci, which we call disease clusters. Preliminary results suggest that as the number of clusters increases, the refined model explains progressively more of the functional differences between the populations.

Disclaimer: www.yourbookbest.com does not own Generative Models of Brain Connectivity for Population Studies books pdf, neither created or scanned. We just provide the link that is already available on the internet, public domain and in Google Drive. If any way it violates the law or has any issues, then kindly mail us via contact us page to request the removal of the link.