UAV Two-dimensional Path Planning in Real-time Using Fuzzy Logic

preview-18
  • UAV Two-dimensional Path Planning in Real-time Using Fuzzy Logic Book Detail

  • Author : Chelsea Sabo
  • Release Date : 2011
  • Publisher :
  • Genre :
  • Pages : 87
  • ISBN 13 :
  • File Size : 39,39 MB

UAV Two-dimensional Path Planning in Real-time Using Fuzzy Logic by Chelsea Sabo PDF Summary

Book Description: There are a variety of scenarios in which the mission objectives rely on a UAV being capable of maneuvering in an environment containing obstacles in which there is little prior knowledge of the surroundings. In these situations, not only can these obstacles be dynamic, but sometimes there is no way to plan ahead of the mission to avoid them. Additionally, there are many situations in which it is desirable to send in an exploratory robot where the environment is dangerous/ contaminated and there is a great deal of uncertainty. These scenarios could either be too risky to send people or not available to humans. With an appropriate dynamic motion planning algorithm in these situations, robots or UAVs would be able to maneuver in any unknown and/or dynamic environment towards a target in real-time. An autonomous system that can handle these varying conditions rapidly and efficiently without failure is imperative to the future of unmanned aerial vehicle (UAV). This paper presents a methodology for two-dimensional path planning of a UAV using fuzzy logic. This approach is selected due to its ability to emulate human decision making and relative ease of implementation. The fuzzy inference system takes information in real time about obstacles (if within the agent's sensing range) and target location and outputs a change in heading angle and speed. The FL controller was validated for both simple (polygon obstacles in a sparse space) and complex environments (i.e. non-polygon obstacles, symmetrical/concave obstacles, dense environments, etc). Additionally, Monte Carlo testing was completed to evaluate the performance of the control method. Not only was the path traversed by the UAV often the exact path computed using an optimal method, the low failure rate makes the Fuzzy Logic Controller (FLC) feasible for exploration. The FLC showed only a total of 3% failure rate, whereas an Artificial Potential Field (APF) solution, a commonly used intelligent control method, had an average of 18% failure rate. Also, the APF method failed about 1/3 of the time for very dense environments (the FLC only had 5% failure rate). These results highlighted one of the advantages of the FLC method: its adaptability to additional rules while maintaining low control effort. Furthermore, the solutions showed superior results when compared to the APF solutions when compared to distance traversed. Overall, the FLC produced solutions that were on average only about 7.7% greater distance traveled (as opposed to 9.7% for the APF).

Disclaimer: www.yourbookbest.com does not own UAV Two-dimensional Path Planning in Real-time Using Fuzzy Logic books pdf, neither created or scanned. We just provide the link that is already available on the internet, public domain and in Google Drive. If any way it violates the law or has any issues, then kindly mail us via contact us page to request the removal of the link.

Unmanned Aircraft Systems

Unmanned Aircraft Systems

File Size : 3,3 MB
Total View : 7371 Views
DOWNLOAD

Unmanned Aircraft Systems (UAS) have seen unprecedented levels of growth during the last decade in both military and civilian domains. It is anticipated that ci